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Abstract—There is a demand for device-free user location
estimation with high accuracy in order to realize various indoor
applications. This paper proposes an IEEE 802.11ac explicit
feedback-based channel state information (CSI) learning system
which can be used for device-free user location estimation. The
proposed CSI learning system captures CSI feedback from off-
the-shelf Wi-Fi devices and extracts 624 features from a CSI
feedback frame defined in IEEE 802.11ac. We evaluated the
proposed system using location estimation with six patterns:
different combinations of device-free user movement and access
point antenna orientation. The evaluation results show that the
machine learning based localization achieves approximately 96%
accuracy for seven positions of the user, and the divergence of
CSI improves localization performance.

Index Terms—Channel State Information, Device-free Location
Estimation, Wi-Fi, IEEE 802.11ac, Machine Learning.

I. INTRODUCTION

User location information plays an essential role in location-
based applications such as navigation, augmented reality, and
home automation. There are many studies on indoor local-
ization using a camera [1], ultrasound [2], infrared rays [3],
received signal strength indication (RSSI) [4]–[6], and channel
state information (CSI) [7], [8]. However, each localization
method individually has a problem. The details of these
problems and related works are discussed in Section II.

This paper proposes an IEEE 802.11ac explicit-feedback-
based CSI learning system and shows the location estimation
evaluation results using the CSI learning system. The proposed
CSI learning system utilizes compressed angles with an access
point (AP), a station (STA), and capture device without
replacing the Wi-Fi cards of the AP and STA, and realizes
device-free user location estimation using only off-the-shelf
Wi-Fi devices. We evaluated the proposed CSI learning system
with a device-free user, seven learning positions, and six learn-
ing datasets. These datasets include different combinations
of device-free movement and AP antenna orientation. The
evaluation results show that average accuracy is approximately
90% or more with the highest accuracy.

The rest of the paper is organized as follows. Section II
discusses the requirements and related works. Section III pro-
poses the IEEE 802.11ac explicit feedback-based CSI learning
system. Section IV shows the evaluation of the localization
performance of the proposed CSI learning system. Finally,
Section V concludes this paper.

II. RELATED WORKS

The indoor localization system needs to satisfy the follow-
ing requirements:

• device-free
• low deployment cost.

Device-free estimation is desirable for user’s burden. If a user
needs to carry around a specific device, then problems may
arise such as battery exhaustion and device failure. The low
development cost includes the financial cost when deploying
a localization system. It is desirable to deploy the system as
cheaply and easily as possible to a target place.

Indoor location estimations using a camera [1], ultra-
sound [2], or infrared rays [3] have achieved high location
estimation accuracy. However, these methods have problems
such as high installation cost, line-of-sight (LOS) requirement,
and the need for many sensors to cover a large area.

To solve the problem on the number of sensors, radio-based
approaches [4]–[18] are attracting increased attention because
of their ubiquitousness in smartphones, electrical appliances,
and laptops. For example, location estimation using RSSI have
been proposed [4]–[6]. Location estimation using RSSI has
the advantage that infrastructure cost is low because we can
use deployed wireless devices. However, RSSI is difficult to
improve indoor location estimation accuracy because RSSI is
coarse-grained and unstable information [19].

CSI is considered fine-grained information compared with
RSSI. Indoor localization using CSI is classified into two
categories: fingerprinting-based systems and time-of-arrival
(ToA)/angle-of-arrival (AoA)-based systems. Fingerprinting-
based systems include PhaseFi [13] and LiFS [7]. PhaseFi and
LiFS acquire 30 subcarriers using CSI Tool [20] and creates
a database. LiFS utilizes user trajectories to obtain fingerprint
values with multiple APs, and achieves higher accuracy than
RSSI-based systems. However, PhaseFi and LiFS require
special wireless devices such as Intel 5300 network interface
cards and universal software radio peripherals.

ToA/AoA-based systems include Chronos [16] and
SpotFi [18]. Chronos measures the ToA while SpotFi mea-
sures the AoA for indoor localization. For example, Chronos
measures ToA using CSI on 35 channels and computes each
propagation delay. However, ToA/AoA-based systems require
users to have a wireless device.
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Fig. 1. Learning and estimation processes using the proposed CSI learning
system

III. IEEE 802.11AC EXPLICIT-FEEDBACK-BASED CSI
LEARNING SYSTEM

To realize a localization system that satisfies device-free
and low deployment cost requirements, we designed an IEEE
802.11ac explicit-feedback-based CSI learning system. Fig. 1
shows the learning and estimation processes using the pro-
posed CSI learning system. The processes are as follows: 1.
extract CSI from CSI feedback; 2. convert bit strings to angle
ϕ, ψ; 3. compute sinϕ, cosϕ, sinψ, and cosψ; and 4. create
database by machine learning, 5. estimation.

A. Capture CSI feedback

The proposed CSI learning system easily extends the num-
ber of APs and STAs because a single capture device can cap-
ture CSI feedback from multiple APs and STAs. Additionally,
the proposed CSI learning system can also capture CSI from
off-the-shelf wireless devices because it only uses standardized
packets in IEEE 802.11ac.

Fig. 2 shows the components and Fig. 3 shows the frame
sequence at an AP and STA to capture CSI feedback. The AP
and the STA are specified in IEEE 802.11ac. First, the AP
transmits a null data packet announcement (NDPA) and null
data packet (NDP). The NDPA is a frame to announce the
start of channel sounding, and the NDP is a frame to estimate
channel information. After the STA receives the NDP, the STA
transmits CSI feedback to the AP. The CSI feedback is a frame
to feedback the CSI based on the NDP. Finally, the capture
device acquires CSI by capturing the CSI feedback from the
STA to the AP. NDPA, NDP, and CSI feedback are defined in
the IEEE 802.11ac standard.

B. Convert bit strings into angle ϕ, ψ

A captured CSI feedback frame includes fifty-two subcarri-
ers, and each subcarrier has different ϕ and ψ which represent
compressed angles. ϕ is the phase difference among antennas,
and ψ is the relative amplitude among antennas. Equations (1)
and (2) represent ϕ radian and ψ radian, respectively [21].

ϕ =
kπ

2bϕ−1
+

π
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+

π

2bψ+2
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Fig. 2. Components of the proposed
CSI learning system
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TABLE I
ϕ AND ψ IN CSI FEEDBACK MATRIX [21]

Size of matrix Number of angles The order of angles
2 × 1 2 ϕ11, ψ21

2 × 2 2 ϕ11, ψ21

3 × 1 4 ϕ11, ϕ21, ψ21, ψ31

3 × 2 6 ϕ11, ϕ21, ψ21, ψ31, ϕ22, ψ32

3 × 3 6 ϕ11, ϕ21, ψ21, ψ31, ϕ22, ψ32

4 × 1 6 ϕ11, ϕ21, ϕ31, ψ21, ψ31, ψ41

. . . . . . . . .

k is the resolution of ϕ and ψ, and bϕ and bψ are the number
of bits of ϕ and ψ, respectively. bϕ and bψ are defined in
multiple-input multiple-output control of a CSI feedback [21]
and vary depending on whether the feedback type is single-
user or multi-user. The proposed CSI learning system uses
single-user feedback. If the feedback type is single-user, then
(bϕ, bψ) will be (4, 2) or (6, 4), and the proposed CSI learning
system uses (6, 4) as (bϕ, bψ). The range of ϕ and ψ are
π
64 ≤ ϕ ≤ 127π

64 , π32 ≤ ψ ≤ 31π
64 , respectively.

The proposed CSI learning system acquires 312 angles. The
number of ϕ and ψ vary depending on the size of the CSI
feedback matrix, which is Nr×Nc. Nr is the number of rows
of the CSI feedback matrix and Nc is the number of columns
of the CSI feedback matrix. Table I shows the relationship
between the CSI feedback matrix size and the number of
angles. Since Nr = 4 and Nc = 1, the CSI feedback matrix is
4×1. From Table I, the proposed CSI learning system acquires
ϕ11, ϕ21, ϕ31, ψ21, ψ31, and ψ41 for each subcarrier. There
are 52× 6 = 312 data from a CSI feedback frame.

C. Compute sinϕ, cosϕ, sinψ, and cosψ

The ϕ and ψ are not directly used for machine learning
because they are angles with the unit radian. For example,
although both 0.1 radian and 2π−0.1 radian mean almost the
same in CSI, there are large distance in view of angle.

To solve the discontinuity of ϕ and ψ, the proposed CSI
learning system used sine and cosine by computing sinϕ,
cosϕ, sinψ, and cosψ, and 312 × 2 = 624 features were
extracted from 312 angle data.

D. Create learning model by machine learning

The proposed CSI learning system created a learning model
from the calculated sine and cosine with label data. The label



Fig. 4. AP used in this evaluation

TABLE II
CONDITIONS OF EXPERIMENT

Variables Explanation
Capture time 1 minute

CSI feedback interval average 10 ms
Frequency 5.2 GHz

Machine learning k-nearest neighbor
random forest

support vector machine

data can be anything such as the number of people in a space,
temperature, or the open/closed state of a door. For example,
Section IV uses the location of a user as label data.

Additionally, we can choose any machine learning method.
For example, Section IV uses k-nearest neighbors, random
forest, and support vector machine.

E. Estimation

The proposed CSI learning system estimates a label from
captured CSI. For example, Section IV estimates the location
of a user using k-nearest neighbors, random forest, and support
vector machine.

IV. EXPERIMENTAL EVALUATION FOR LOCATION
ESTIMATION

A. Experimental settings

We considered the following six datasets for evaluating the
influence to location estimation accuracy by direct waves,
reflected waves, and user movement. Fig. 4 shows the AP
used in this evaluation. We assumed that the STA receives a
direct wave easily if the antenna is upright, and receives a
reflected wave easily if the antenna is laid. The six datasets
are as follows:

• Four antennas are upright and the user is staying at seven
learning positions in Fig. 5 (four upright staying),

• Four antennas are upright and the user is walking on the
spot at seven learning positions in Fig. 5 (four upright
walking),

• Four antennas are laid and the user is staying at seven
learning positions in Fig. 5 (four laid staying),

• Four antennas are laid and the user is walking on the spot
at seven learning positions in Fig. 5 (four laid walking),
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Fig. 5. Experimental environment

TABLE III
AVERAGE ACCURACY OF TABLE IV– IX

Location estimation k-nearest
neighbor random forest

support vector
machine

four upright staying 21 20 33
four upright walking 53 62 69

four laid staying 53 53 50
four laid walking 63 66 61

two upright two laid staying 66 39 55
two upright two laid walking 88 89 95

• Two antennas are upright and the other two are laid, and
the user is staying at each of the seven learning positions
in Fig. 5 (two upright two laid staying), and

• Two antennas are upright and the other two are laid,
and the user is walking on the spot at each of the
seven learning positions in Fig. 5 (two upright two laid
walking).

Table II shows the evaluation settings. The proposed CSI
learning system acquired approximately 1400 CSI feedback
packets per dataset: the capture time was 1 min per place, and
the average CSI feedback interval was 10 ms. The channel
frequency band was 5.2 GHz. We used three machine learn-
ing methods: k-nearest neighbor, random forest, and support
vector machine.

Fig. 5 shows the experimental environment. The red square
is the location of the AP and the red triangle is the location
of the STA. The experiment was conducted at the NTT
Yokosuka R&D Center 1F. The number in Fig. 5 is the learning
positions of the device-free user. The size of the experimental
environment is 10.8 m × 13.2 m.
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Fig. 6. ϕ11 while the user was staying
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TABLE IV
CONFUSION MATRIX: LOCATION ESTIMATION RESULT OF FOUR UPRIGHT STAYING

k-nearest neighbor random forest support vector machine
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 68 5 0 22 3 2 0 70 0 0 30 0 0 0 73 0 0 27 0 0 0
2 3 62 33 1 1 0 0 2 52 28 17 0 0 0 23 70 7 0 0 0 0
3 1 27 4 68 0 0 0 88 4 5 3 0 0 0 1 0 0 99 0 0 0
4 3 49 33 15 0 0 0 72 3 12 13 0 0 0 11 0 4 85 0 0 0
5 0 85 3 12 0 0 0 34 46 20 0 0 0 0 0 0 0 100 0 0 0
6 0 47 28 25 0 0 0 22 37 41 0 0 0 0 0 0 0 100 0 0 0
7 0 97 0 3 0 0 0 32 39 29 0 0 0 0 0 0 0 100 0 0 0

TABLE V
CONFUSION MATRIX: LOCATION ESTIMATION RESULT OF FOUR UPRIGHT WALKING

k-nearest neighbor random forest support vector machine
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 31 0 0 5 22 19 23 38 0 0 8 20 17 17 38 0 0 8 5 11 38
2 31 69 0 0 0 0 0 13 87 0 0 0 0 0 1 99 0 0 0 0 0
3 2 9 44 1 20 10 14 3 9 43 4 17 7 17 2 9 44 4 14 2 25
4 1 4 29 33 14 9 10 1 5 6 57 15 4 12 1 3 7 59 6 1 23
5 0 0 0 0 81 1 18 0 0 0 0 83 0 17 0 0 0 0 95 0 5
6 0 0 0 0 11 65 24 0 0 0 0 16 63 21 0 0 0 0 9 67 24
7 0 0 0 0 27 22 51 0 0 0 0 18 20 62 1 0 0 0 8 11 80

TABLE VI
CONFUSION MATRIX: LOCATION ESTIMATION RESULT OF FOUR LAID STAYING

k-nearest neighbor random forest support vector machine
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 71 6 22 1 0 0 0 66 12 11 11 0 0 0 55 23 19 3 0 0 0
2 14 33 15 36 0 1 1 17 36 25 22 0 0 0 8 39 36 15 0 0 2
3 0 0 81 19 0 0 0 0 0 95 5 0 0 0 0 0 76 23 0 0 1
4 5 11 6 73 0 2 3 9 8 10 72 0 0 1 0 13 7 76 0 0 4
5 5 8 0 0 26 22 39 15 10 0 0 18 27 30 7 23 0 0 14 32 24
6 3 8 0 0 3 61 25 4 4 0 0 6 53 33 2 12 0 0 3 63 20
7 14 20 0 6 5 29 26 19 17 1 7 4 22 30 9 27 1 6 2 28 27

TABLE VII
CONFUSION MATRIX: LOCATION ESTIMATION RESULT OF FOUR LAID WALKING

k-nearest neighbor random forest support vector machine
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 92 5 1 1 0 1 0 95 3 1 1 0 0 0 88 2 6 3 0 1 0
2 13 50 16 2 5 5 9 11 56 16 4 6 4 13 5 35 21 3 7 2 27
3 8 10 60 6 5 6 5 8 11 66 0 7 4 4 6 8 71 3 6 1 5
4 1 5 16 69 3 4 2 3 4 24 63 2 2 2 0 2 26 66 1 4 1
5 0 0 0 0 62 9 29 0 0 0 0 60 13 27 0 0 1 0 52 29 18
6 2 12 3 1 11 50 21 5 12 2 2 13 54 12 2 11 7 3 15 50 12
7 0 0 0 22 6 11 61 0 2 0 21 4 8 65 0 0 0 24 1 7 68

B. Results

Table III shows the average accuracy of location estimation
using the six datasets and three machine learning methods.
Table IV– IX show the location estimation results of the six
datasets. The columns and rows are the actual and estimated
positions of the user, respectively. The unit of the table
elements is percentage.

In Table IV– IX, we can make observations: First, two
upright two laid walking with the support vector machine
achieved the best performance.

Second, the datasets with walking are better than those with
staying. Table IX shows the confusion matrices of two upright
two laid walking, and Table VIII shows that of two upright
two laid staying. In Table VIII, the datasets with staying tend
to induce errors when the actual user position is at 5, 6, or 7,
which is out of the LoS between the AP and STA.

Third, the direction of the antenna is important: two upright
two laid is better than four upright and four laid. Table IX
shows the confusion matrices of two upright two laid walking,
Table V shows that of four upright walking, and Table VII



TABLE VIII
CONFUSION MATRIX: LOCATION ESTIMATION RESULT OF TWO UPRIGHT TWO LAID STAYING

k-nearest neighbor random forest support vector machine
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 100 0 0 0 0 0 0 92 8 0 0 0 0 0 100 0 0 0 0 0 0
2 80 18 2 0 0 0 0 80 18 2 0 0 0 0 24 64 2 0 0 0 0
3 0 43 57 0 0 0 0 0 43 57 0 0 0 0 0 0 44 56 0 0 0
4 0 0 0 100 0 0 0 0 0 0 100 0 0 0 0 0 0 100 0 0 0
5 0 0 0 16 84 0 0 0 0 0 100 0 0 0 0 0 0 100 0 0 0
6 0 0 0 51 0 0 49 50 0 5 45 0 0 0 0 0 0 100 0 0 0
7 0 0 0 0 0 0 100 0 0 38 32 0 0 30 0 0 21 0 0 0 79

TABLE IX
CONFUSION MATRIX: LOCATION ESTIMATION RESULT OF TWO UPRIGHT TWO LAID WALKING

k-nearest neighbor random forest support vector machine
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 80 1 15 0 0 0 0 82 6 10 2 0 0 0 91 0 9 0 0 0 0
2 1 87 12 0 0 0 0 1 87 12 0 0 0 0 1 99 2 0 0 0 0
3 5 0 91 4 0 0 0 5 0 91 4 0 0 0 0 0 100 0 0 0 0
4 0 1 3 96 0 0 0 0 1 3 96 0 0 0 0 0 7 93 0 0 0
5 0 0 0 0 89 9 2 0 0 0 0 89 9 2 0 0 0 0 97 3 0
6 0 0 0 0 16 82 2 0 0 0 0 16 82 2 0 0 0 0 2 89 9
7 0 0 0 0 4 0 96 0 0 0 0 4 0 96 0 0 0 0 4 0 96

shows that of four laid walking. Although four upright walking
and four laid waking datasets have errors at almost every
position, two upright two laid walking successfully estimates
every position.

As described above, two upright two laid antennas and user
walking improve localization accuracy. The improved accuracy
indicates that the divergence of CSI improves the performance
of machine learning.

In order to check whether there is CSI divergence in the
two upright two laid walking dataset, we plotted ϕ11 on time
series. Fig. 6 and Fig. 7 show the ϕ11 while a user was staying
and while a user was walking at position 1, respectively.
The horizontal axis is the time of CSI feedback packets,
and the vertical axis is the phase. From Fig. 6 and Fig. 7,
two observations can be made. First, walking datasets include
larger divergence than staying datasets. Second, two upright
two laid datasets include larger divergence than four upright
datasets and four laid datasets.

The finding is interesting: the divergence of CSI im-
proves machine learning performance. Previous studies such as
PhaseFi [13] and PADS [14] have used linear transformation
for localization, and described that stable phases improve
localization accuracy.

V. CONCLUSION

In this paper, we proposed an IEEE 802.11ac explicit-
feedback-based CSI learning system. Our CSI learning sys-
tem uses only off-the-shelf WiFi devices. The proposed CSI
learning system utilizes six compressed angles for a device-
free user location estimation. We evaluated the proposed CSI
learning system using six datasets by considering the AP’s
antenna orientation and movements of the user. The evaluation
results showed that location estimation using the data while

two-upright two-laid walking had the highest accuracy among
the proposed location estimation. Location estimation using
data while the user was walking showed higher accuracy than
data while the user was staying, and the divergence of CSI
improves localization performance.
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