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Abstract—Understanding humans and its environment 
is a key enabler of smart, intelligent applications and 
services for a future smart society. To deploy such services 
in our ambient environment, it is expected to fully utilize 
battery-less and maintenance-free IoT devices and 
technologies for more ambient, distributed computing. In 
recent years, Wi-Fi-based communications are becoming 
more energy-efficient, and channel state information (CSI) 
has the potential to sense more detailed information about 
the things in the real world. Besides, ambient backscatter 
has appeared as a promising technology for zero-energy 
sensing and communications. Leveraging those state-of-the-
art technologies, energy harvested IoT devices for context 
recognition of humans and objects will be in reality. A 
significant challenge is how to make use of inferior, less-
powerful zero-energy IoT devices to achieve processing of 
interest, i.e., accurate recognition of humans and objects, 
while a single device does not work. Therefore, we consider 
orchestrating distributed tiny IoT devices for both sensing 
and communications. Particularly, distributed machine 
learning in the local environment will achieve highly 
promising sensing in our ambient environment. In this 
paper, we survey the state-of-the-art technologies for zero-
energy sensing and communications in the context of 
humans and objects sensing and recognition. Then, we 
address the challenges to be tackled in terms of such 
distributed, intelligent sensing using zero-energy devices. 
Finally, we introduce the concept of utilizing distributed 
IoT devices, followed by the statement about our ongoing 
work toward future zero-energy sensing and processing. 

Keywords—zero-energy IoT devices; backscatter 
communication; context recognition; channel state 
information 

I. INTRODUCTION 
Recently, a variety of methodologies and technologies to 

address the issues in smart and connected communities (S&CC) 
have been actively studied [1] [2]. Besides, in the context of the 
Internet of Things, it is said that there exist 1.5 trillion objects 
in the real world and that only 0.6% of the objects are connected 
to the Internet [3]. With a more enhanced capacity of the 
Internet connection of those IoT devices in future, 
unpredictable amount of sensing data will be generated, and 

more intelligent, smart data processing (such as AI) will be 
expected to mine significant knowledge and values from the big 
data. Especially, understanding humans and its environment is 
a key enabler of smart, intelligent applications and services for 
a future smart society. 

To deploy such services in our ambient environment, it is 
expected to fully utilize battery-less and maintenance-free IoT 
devices and technologies for more ambient, distributed 
computing. In general, IoT devices spend energy for sensing, 
computation and communication. Sensing can be executed in 
the order of µW up to tens of µW. However, conventional 
wireless communication consumes several tens or several 
hundreds of mW for amplifying a radio signal. Even BLE 
consumes the order of mW. To this end, ultra-low power 
communication technologies are essential. In recent years, a 
new wireless communication technology called ambient 
backscatter communication [4][5][6] is being developed,  
which can reduce the power consumption to about 1/10,000 
(about 10 µW) by utilizing radio waves in the wild such as TV 
and Wi-Fi. In the ambient backscatter communication, by 
changing the resistance values of the antenna, the device can 
control the radio waves that propagate in the environments. 
Using this feature, we can transmit 0/1 bit signals with zero-
energy. Originally, the backscatter communication is a 
technology for RFID. RFID communicates by transmitting a 
continuous carrier wave from a reader and each RFID tag sends 
back its ID by backscattering received carrier waves. Since the 
carrier waves are generated externally, the RFID tag only needs 
to change the impedance by controlling ON/OFF of RF switch, 
and the controller consumes almost no power. While traditional 
backscatter uses continuous carrier waves, ambient backscatter 
uses radio signals emitted by surrounding equipment/devices. 
As shown in Fig. 1, recently we can combine general Wi-Fi 
communication with Wi-Fi-based ambient backscatter 
communication (for details, see Section IV.A). 

If we can develop a mechanism to detect motion and 
environment of humans and objects (e.g. walking, stay, sit-
down, object movement, temperature change, and shape 
change) by radio waves fluctuation using ambient backscatter 
technologies, it will contribute to zero-energy sensing of 
humans and objects. In recent years, Wi-Fi-based ambient 
backscatter is able to transmit and receive data in several tens 



 
Fig. 1. Ambient Backscatter Communication[64] 

of meters with several Mbps. Some recent RFID technologies 
enable several meters of transmission. Besides, sensing devices 
using only harvested energy have been investigated and 
developed, and they can be used for human and object sensing. 
We have also been developing human sensing technologies in 
a variety of contexts and services [7][8][9][10][11][12][13]. 

The context recognition technologies for humans and 
objects using energy-efficient or zero-energy sensors have been 
actively investigated and presented at top-tier ubiquitous and 
pervasive conferences such as UbiComp and PerCom, and 
published in journals such as Pervasive and Mobile Computing 
and Proc. of the ACM on Interactive, Mobile, Wearable and 
Ubiquitous Technologies (IMWUT). On the other hand, most of 
the existing sensing technologies using backscatter 
communication or similar zero-energy technologies are still in 
progress. Particularly, they are focusing on the detection of the 
presence of humans, etc., which is not comparable with those 
using powerful sensors. To complement this poor 
computational capability, we believe distributed processing 
where tiny IoT devices are united is promising. With nicely 
designed protocols and algorithms, we can execute even neural 
networks for machine learning. We have already proposed the 
design concept of such distributed machine learning in [7], 
where tiny IoT devices are operated in a distributed fashion to 
run Convolutional Neural Networks (CNN). We will later 
introduce this concept. 

In this paper, we survey the technologies for context 
recognition of humans and objects using the state-of-the-art 
ambient backscatter communication technologies, channel state 
information (CSI) and other wireless sensing technologies. We 
also address issues to be discussed for distributed processing by 
coordination of IoT devices, each of which is energy-harvested. 
We consider the following plausible examples of context 
recognition of humans and objects that should be realized in the 
near future by using zero-energy IoT devices with ambient 
backscatter communication or some other technologies. They 
are, for example, (i) elderly monitoring at nursing home or their 
homes, (ii) activity recognition of athletes, (iii) tracking human 
trajectories and detecting intrusion of wild animals, (iv) 
construction of sociograms to visualize the friendship among 

children, (v) grasping wind and ground fluctuation of sloping 
lands in disasters. We are working toward context recognition 
that will be mandatory in our connected societies. It is also 
significant to deploy design and development support. The goal 
of this paper is to promote such research activities that 
contribute to ambient, zero-maintenance human and object 
sensing. We will discuss the issues mentioned above presenting 
our ongoing research on zero-energy communication and 
distributed sensing. 

II. RELATED WORK 
Here, we survey the latest technology for ambient 

backscatter communication, channel state information (CSI), 
and human/object context recognition using IoT devices. 

A. Ambient backscatter communication 
The study of ambient backscatter communication [4][5][6] 

has two directions. The first direction is to borrow existing radio 
signals for energy harvesting communication purposes. For 
example, there are methods using radio signals from TV 
broadcasting and mobile communication [6][14], Wi-Fi signals 
[15][16][17], LoRa signals [18], Bluetooth signals [19] and FM 
broadcasting signals [20]. Ref. [14][16] address speeding up of 
Wi-Fi backscatter. Especially, BackFi [16] has succeeded to 
achieve high throughput backscatter communication using Wi-
Fi signals by making an access point having the in-band full-
duplex capability [21][22]. 

The second direction is to generate ambient backscatter 
packets that can be received by existing wireless communication 
devices such as Wi-Fi and LoRa. By replacing radio signals used 
in the above first direction with those emitting from a plug-in 
device that transmits continuous waves, it is possible to generate 
packets receivable by the existing radio communication devices. 
Ref. [23][24] have successfully generated Wi-Fi packets and 
LoRa packets in backscatter communication, respectively. Also, 
inter-technology backscatter is succeeded (e.g., the generation 
of Wi-Fi packets using radio signals from Bluetooth [18], and 
the generation of ZigBee packets using radio signals from Wi-
Fi [17]). Ref. [25][26] have realized new backscatter-based 
communication methods such as backscatter video [25] and 
voice [26], NetScatter [27] supports a massive number of 
ambient backscatter nodes, and Ref. [28] has proposed in-band 
full-duplex communication between ambient backscatter nodes. 

B. Wireless Sensing 
In recent years, wireless sensing technology for sensing 

various objects by using radio waves without using sensors has 
attracted attention. Wi-Fi Channel State Information (CSI) is an 
emerging approach for wireless sensing, which is widely 
applicable to various types of sensing. Several works have 
proposed congestion estimation and people counting by feeding 
CSI-based features into estimation models built by machine 
learning and/or deep learning. For example, in [29], the feature 
quantity called Percentage of nonzero Elements (PEM) is 
defined, the magnitude of the fluctuation in the propagation path 
of radio waves is quantified, and the number of people in the 
room is estimated based on the Gray model. Also, FreeCount 
[30] realizes the number of people in the room by using Transfer 



Kernel Learning (TKL), and achieves approximately 96% 
accuracy in the classification of 0 to 7 people. CSI is also used 
for sensing movement of various objects. Ref. [31] uses CSI to 
estimate state changes of everyday objects (e.g., door 
open/close). WiAG recognizes gestures by using CSI [32]. 
Similarly, Ref. [33] proposes sign language recognition by CSI 
and CNN. Furthermore, Ref. [34] achieves an estimation of 
keystrokes on laptops by learning CSI change due to the 
different movement of fingers for different keystrokes. Recently, 
CSI is also used for fall detection [35]. 

Backscattering RF signal is another emerging trend of 
wireless sensing. Printed Wi-Fi [36] is the first concept of truly 
battery-less sensors fabricated by a 3D printer by combining 
plastic and conductive filament materials. Surprisingly, the 
printed battery-less sensors can communicate with Wi-Fi 
devices by translating physical movement (e.g., the flow of 
water) into the backscattered Wi-Fi signal. To do this, Printed 
Wi-Fi leverages mechanical movements of gears, etc. and 
creates the change of the antenna impedance which results in the 
backscattered signals. To recognize and count repetitive motions 
such as squats and steps, Motion-Fi [37] leverages repetitive 
changes of RF signal from backscattering tags. To avoid 
interference of backscattered signals, Motion-Fi controls the 
frequency shift in the backscattered signals.  Also, Word-Fi [38] 
recognizes handwriting letters by leveraging the backscattering 
tags developed in Motion-Fi [37]. 

C. Context Recognition of Humans and Objects 
Context recognition is one of the key technologies for a 

future smart society. For example, various ubiquitous 
technologies have been proposed for elderly people [39]. The 
first step to support elderly people is context recognition such as 
activities [40], fall detection [41], daily living patterns [42], and 
so on. Human Activity Recognition (HAR) has attracted a large 
number of researchers [43]. Smartphones are used for mapping 
our real social networks [44]. Ref. [45] leverages wireless sensor 
networks for landslide monitoring and detection. Ultra-Wide 
Band (UWB) combined with CNN is fully exploited for animal 
intrusion detection which is able to classify humans and animals 
[46]. Ref. [47] proposes a method to infer social/organizational 
relationships among occupants in a building from plug load 
energy consumption sensors. Ref. [48] analyzes the impact of 
different resolutions of occupancy count profiles estimated by 
cameras and Wi-Fi sensors on the accuracy of building 
performance simulation. 

III. DISTRIBUTED PROCESS ON ZERO-ENERGY IOT DEVICES 
Here, we describe issues to be considered in the construction 

of zero-energy IoT devices and distributed processing on such 
IoT devices, and their solutions. 

A. Construction of Zero-Energy IoT Device Networks 
With the emerging progress of MEMS technology, it has 

become relatively easy to develop energy harvesting IoT devices. 
RFID tags are also used as zero-energy devices since they can 
harvest energy from RF emitted by RFID readers. Also, many 
researchers have been working on passive sensing which relies 
on plug-in infrastructure devices with energy supply. However, 

due to the limitation of energy harvesting, each IoT device has 
limited capabilities in terms of sensing, processing, and 
communication. For example, the only capability of an IoT 
device may be backscattering RF signal which does not require 
a large amount of energy. To overcome such limitations, the key 
is distributed processing among multiple IoT devices. 

As shown in Fig. 2(a), by attaching multiple RFID tags to a 
human body, the skeleton of the person is captured by analyzing 
signals backscattered from the tags. In general, sensing 
capabilities of individual sensors are not so high since many of 
low power sensors return limited information such as the tag’s 
ID. On the other hand, by connecting a large number of these 
energy harvested sensors to the network, it is possible to 
construct a system that estimates the movement of the skeleton 
with high accuracy. Furthermore, by attaching multiple RFID 
tags to multiple people, the spatial resolution of sensing 
increases to identify different targets. Another example is zero-
energy sensing by backscatter-based wireless sensing. Similar to 
printed Wi-Fi, we may be able to translate change of temperature 
into the change of antenna impedance by using a bimetallic 
switch which changes its state (ON/OFF) according to the 
ambient temperature (see Fig. 2(b)). Since the change of antenna 
impedance can be directly captured by observing Wi-Fi signals 
backscattered from IoT devices, zero-energy sensing is 
achievable. To widen the target area of sensing, multiple IoT 
devices are deployed and coordinated accordingly with the 
assistance of infrastructure. 

 
Fig. 2. Examples of Zero-energy IoT Device Networks  

Besides, research and development of learning mechanisms 
using energy harvested sensor groups are conducted. In order to 
develop such zero-energy IoT device networks and/or energy 
harvest sensing systems, it is essential to construct networks 
based on a communication scheme with ultra-low power 
consumption such as backscatter communication. 

B. Distributed Processing on Zero-Energy IoT Device 
Networks 
In context recognition systems using zero-energy IoT 

devices, since the recognition capability of each device is not so 
high, there are cases where a large number of IoT devices must 
be arranged in a target area. In such a case, we need to consider 
(i) what kind of queries are to be sent to multiple IoT devices in 
the target area, (ii) what timing those queries should be sent, and 



(iii) whether all the necessary data can be forwarded efficiently 
at a certain period (k times per second, for example), 
simultaneously. It is also important to consider a communication 
mechanism not to make packets from the multiple IoT devices 
collide each other. It is also assumed that it may be necessary to 
construct a mechanism for transmitting and receiving data 
concurrently using multiple radio channels. Meanwhile, it is 
troublesome for a system designer to individually designate 
these transmission/reception timing, channel assignment, 
recovery procedure when the transmission/reception errors 
occur in a given zero-energy IoT device network.  

Therefore, if (i) the 3D map and obstacle information of a 
target IoT device network, (ii) the required information 
collection cycle, and (iii) the recovery method at the time of 
errors are designated, it is desirable that we can devise a 
mechanism to estimate the appropriate information collection 
mechanism, automatically generate the necessary information 
collection algorithm, and develop a design development support 
environment by using the radio wave propagation evaluation 
tool and network simulator together. 

In recent years, research on machine learning such as deep 
learning has been actively conducted, and attempts to machine 
learning on a wireless sensor network have also begun [7][49] 
[51][53][54][55]. Although it is conceivable to transfer all the 
sensing data to the cloud for machine learning, continuous 
transmission of sensing data from all the IoT devices to the cloud 
increases communication costs. The power consumption of the 
IoT devices can be reduced by holding their sensing data as 
much as possible within their own IoT devices and 
implementing a learning mechanism within the local IoT device 
network. Generally, zero-energy IoT devices are ineffective and 
even if they can utilize power supply mechanisms such as 
environmental power generation, there is a high possibility that 
machine learning mechanisms consisting of zero-energy IoT 
devices will not function well when communication load 
increases. Multi-layer neural networks have recently attracted a 
lot of attention, and Convolutional Neural Networks (CNNs) 
have been utilized in many domains. Since wireless sensor 
networks (WSNs) continuously create 2D or 3D geographical 
data, we can train CNNs to process such data from WSNs. For 
this purpose, it is desirable that we can design a distributed 
version of CNNs restricting wireless communication amounts 
among wireless sensor nodes and a neuron assignment algorithm 
which can naturally handle operations like convolution, pooling 
and backward propagation in a fully distributed manner, 
averaging communication and processing tasks over wireless 
sensor nodes. 

Since we often need multiple IoT devices for context 
recognition of humans and objects, CNNs on WSNs can 
integrate ambient backscatter based direct sensing using various 
sensors with ultra-low power IoT devices and wireless sensing 
based indirect sensing using RSSI and CSI with existing 
wireless networks as shown in Fig. 3. Ambient backscatter and 
wireless sensing are complementary. Ambient backscatter can 
overwhelmingly reduce the energy consumption of 
communication. It also can directly and precisely acquire target 
physical information using maintenance-free sensor nodes, but 
time and effort for installation on humans and objects remain. 
On the other hand, since wireless sensing performs sensing 

indirectly using radio waves, it is difficult to acquire detailed 
physical information of the target. However, it is possible to 
acquire spatial information easily because of using radio waves. 
There is no need to install sensors on humans and objects. By 
combining fine detail information of ambient backscatter and 
super multidimensional information brought by coarse grain 
spatial information of wireless sensing by deep learning, it 
becomes possible to handle fine grain spatial information. 

 
Fig. 3. Context Recognition on Zero-Energy IoT Device Networks 

C. Context Recognition Technology in the Near Future 
If people move, radio waves such as WiFi will fluctuate. By 

grasping the fluctuation directly by backscatter communication, 
it is possible to create new technology to grasp the behavior of 
humans with higher accuracy than the conventional techniques. 
Stimuli-responsive hydrogels exhibiting physical changes in 
response to environmental conditions have attracted growing 
attention for the past few decades [56]. Recent 3D printers can 
easily produce such materials exhibiting physical changes. A 
battery-less IoT devices for temperature estimation can be 
constructed by constructing a structure that changes the shape 
and size according to the temperature change and generates a 
different radio wave fluctuation depending on the shape change. 

Furthermore, by creating zero-energy IoT devices that detect 
illuminance or by creating zero-energy IoT devices that detect 
vibration and acceleration using springs, various context 
recognition techniques can be created [36][57]. In addition to 
battery-less IoT devices, we can also use environmental power 
generation technology to gather and use a small amount of 
environmental energy such as light, vibration, heat and so on in 
capacitors, and use it for the development of ultra-low power 
IoT devices for context recognition of humans and objects. 

Using such new technology, we can create several 
techniques for context recognition. For example, Ref. [58] 
presents RF-ECG based on commercial-off-the-shelf (COTS) 
RFID, a wireless approach to sense the human heartbeat through 
an RFID tag array attached on the chest area in the clothes. Ref. 
[7][35] present techniques for detecting fall down of people. 
Such techniques can be used for (i) monitoring elderly people’s 
sleep and context changes at the elderly facilities. Ref. [59] 
proposes GRfid, a device-free gesture recognition system by 
exploiting phase information of RFID signals with COTS 
devices. RF-Kinect in Fig. 2(a) a training-free system which 



tracks the body movement in 3D space [60]. Such techniques 
can be used for (ii) grasping activities of athletes. Ref. [61] 
proposes a method to determine the movement direction of 
tagged object through a Radio Frequency Identification (RFID)-
based system. Ref.  [7] also proposes a method for detecting the 
movement of humans using film typed human sensors. Such 
techniques might be able to be used for (iii) grasping the 
movement trajectory of people and detecting intrusion of wild 
animals. By attaching RFID tags to kindergarten children's 
clothes and installing multiple WiFi base stations sending out 
WiFi signals that can only reach certain specific areas on play 
equipment, classrooms, corridors in the kindergarten, each WiFi 
base station can collect children’s tag IDs who play together. 
Then, we can estimate the friendship of kindergarten’s children 
as a graph called sociogram. Some children might interact with 
various friends and others might be isolated. Such relationships 
can be represented by (iv) building a sociogram for a target 
children group. There are several types of ultra-low power 
accelerometers using environmental power. Combining such 
devices and backscatter communication devices, we might be 
able to construct a monitoring system for (v) grasping wind 
speeds and ground fluctuation of sloping lands. (vi) 
Autonomous air conditioning management of commercial 
facilities might be also possible.  

Although the technology for ambient backscatter and 
wireless sensing is expected to become promising means to 
construct future smart societies, we need much study for 
practical purposes. 

IV. OUR CURRENT ON-GOING WORK 
In this section, we explain our current on-going work 

concerning backscatter communication, channel state 
information and context recognition. 

A. Integration of Wireless LAN and Ambient Backscatter 
We are working on how to integrate ambient backscatter 

technology into existing wireless networks. Fig. 4 shows the 
overview of the wireless network that we are aiming for. Our 
target is wireless networks where IEEE 802.11 nodes and 
ambient backscatter nodes coexist in the same frequency band. 
An access point equips the ability of in-band full-duplexing, and 
communicates with PCs and smartphones using IEEE 802.11 
signals. IoT devices communicate with the access point with 
backscattering the IEEE 802.11 signals. The access point 
transmits and receives data simultaneously using the same 
frequency channel, which is performed by utilizing a self-
interference cancellation technique. Therefore, the in-band full-
duplexing transmission in wireless communications potentially 
doubles the spectral efficiency relative to the conventional half-
duplex operation. 

For the integration of IEEE 802.11 and ambient backscatter, 
we believe that it is important to provide an environment in 
which the research community easily tests communication 
protocols and applications.  To this end, we are developing an 
open-source ambient backscatter testbed which realizes ZigBee 
backscatter in the 2.4 GHz band using commercial-off-the-shelf 
(COTS) products. 

 
Fig. 4. Integration of Wireless LAN and Ambient Backscatter 

There are three reasons for implementing backscatter 
devices using ZigBee (IEEE 802.15.4). The first reason is a good 
balance between communication distance and communication 
speed. Since IEEE 802.15.4 realizes 250 kbps communication 
speed using direct sequence spread spectrum, communication 
distance is long due to spread gain. The low-power 250 kbps 
communication is suitable for many sensor-based applications. 
For example, the communication speed is too slow when LoRa 
is used, and the communication distance is short and power 
consumption is large when using Wi-Fi for ambient backscatter. 
The second reason is that there are many IEEE 802.15.4 
development environments which are commercially available. 
The transceivers of IEEE 802.15.4 are sold at less than $100, 
and many development and analysis tools are provided. On the 
other hand, the history of LoRa has less history than IEEE 
802.15.4, resulting in few transceiver choices. Wi-Fi has many 
products that cannot access the physical layer and the MAC 
layer, and it is not suitable for research and development. The 
third reason is 2.4 GHz band. As mentioned above, we are trying 
to integrate wireless LAN and backscatter communication. 
Thanks to the long history of 2.4 GHz communication, we can 
easily get 2.4 GHz COTS products and build the experimental 
environment. 

We are developing an experimental environment for 
protocol  study.  Fig. 5  shows  the  experimental  apparatus  for  

 
Fig. 5. Experimental Apparatus for 2.4 GHz Backscatter 



protocol study on 2.4 GHz backscatter. The experimental 
apparatus is constructed to enable researchers to easily modify 
the protocols of the physical layer and MAC layer, and consists 
of a continuous wave transmitter, 2.4 GHz backscatter node, and 
backscatter receiver. The continuous wave transmitter consists 
of a frequency synthesizer and power amplifier. The 2.4 GHz 
backscatter node consists of an STM32 Nucleo board [62] and 
an RF switch. The backscatter receiver consists of an STM32 
Nucleo board, a switch capacity filter, an orthogonal transducer, 
and a local oscillator. The total cost of these components is less 
than $1,000. The software on STM32 Nucleo board can be 
implemented using free online IDE called as mbed compiler [63]. 

We are also developing a ZigBee backscatter node for 
application researcher: small size (2cm× 4.25cm) and only 
support IEEE 802.15.4. Fig. 6 shows the ZigBee backscatter 
node. The ZigBee backscatter node consists of STM32 CPU, an 
RF switch, a chip antenna, and a button battery. The size of the 
node is constrained by the button battery and the chip antenna. 
We use CR2032 as a button battery which diameter is 2cm. The 
chip antenna has restrictions that the area of the ground must be 
sufficient and a metal plate must not be near the chip antenna. 
The chip antenna has restrictions that the area of the ground must 
be sufficient and there is no characteristic if there is a metal plate 
in the vicinity. The transmitter side of ZigBee backscatter is as 
same as the continuous wave transmitter in above mentioned 
experimental apparatus for protocol study. We can use 
commercial IEEE 802.15.4 modules as the receiver side. 

In order to integrate wireless LAN and ambient backscatter 
communication, it is not just a matter of the hardware testbed. 
Since the existing IEEE 802.11 MAC protocol cannot be used 
for the integrated networks, it is necessary to design a new 
communication protocol. For example, when backscatter 
communication is generated every time wireless LAN 
communication is performed, and the communication capacity 
is consumed. As a result, the communication performance of the 
wireless LAN is deteriorated. Additionally, since the 
communication speed of backscatter communication is much 
slower than that of wireless LAN, the packet error rate of 
backscatter communication increases when there is not enough 
wireless LAN traffic. 

 
Fig. 6. ZigBee Backscatter Node for Application Study 

In [64], the authors have proposed a MAC protocol of 
wireless LAN supporting ambient backscatter. The proposed 
MAC protocol utilizes IoT specific features: many applications 
have their own constant communication cycles which vary 
depending on target applications. Only by registering the data 
acquisition cycle of each IoT device to the access point, the 
proposed MAC protocol enables the wireless LAN 
communication and backscatter communication to coexist with 
low overhead. Scheduling is performed according to the 
communication cycle and band occupation time to reduce the 
band-utilization efficiency and communication error rate. The 
scheduling includes which IoT device's backscatter 
communication is permitted, and whether the access point sends 
a dummy packet for backscattering. 

B. Wireless Sensing 
One of our wireless sensing works is congestion estimation 

in train cars based on Bluetooth RSSI among smartphones [65] 
(Fig. 7). It is natural that human body causes signal attenuation. 
However, in train cars, RF is also affected by other complex 
factors such as train car body itself, distribution of people, 
distance between the phone pair, and so on. This makes the car-
level congestion estimation non-trivial. We have overcome this 
challenge by aggregating measurements from multiple users 
estimated to be in the same train car. We note that the user 
positions are also estimated by relying on RSSI combined with 
reference nodes whose positions are given. Since doors between 
train cars significantly attenuate the signal, our method estimates 
car-level positions regardless of congestion levels based on 
RSSI measured among users. Then, we estimate car-level 
congestion by majority voting weighted by the reliability of 
estimated positions. Our method is based on the likelihood 
functions for both of the congestion and position estimation. 
These functions are built according to our preliminary 
experiments. In [65], we have conducted real experiments and 
achieved car-level positioning with the accuracy of 83%. Also, 
we have confirmed that our method achieves the estimation of 
three-level congestion (low/medium/high) with the F-measure 
of 0.82. 

 
Fig. 7. Snapshots of Different Congestion Levels 

We are also working on wireless sensing utilizing already 
deployed wireless networks. In [66], we have proposed a 
congestion estimation using synchronized RSSIs measured by 
IEEE 802.15.4. First, we have proposed a mechanism to 
measure two kinds of RSSIs: the inter-node RSSI and 
surrounding RSSI. The inter-node RSSI is the strength of a radio 
signal when a sensor node receives the signal that another sensor 
node transmits. The surrounding RSSI is the strength of radio 
waves when a sensor node receives signals that other sensor 
nodes do not transmit. Both of these RSSIs are strictly 



synchronized using “Choco” which is a wireless sensor network 
platform utilizing simultaneous transmission [66]. The proposed 
method enables us to estimate the congestion just by adding 
RSSI acquirement features to IEEE 802.15.4 wireless sensor 
networks already-deployed for a different purpose. The 
examples of different purpose include structural health 
monitoring and smart meters. Next, we have also proposed 
congestion estimation algorithms that estimate the number of 
people from the inter-node RSSI and the number of devices from 
the surrounding RSSI. An experiment conducted in our 
laboratory has confirmed that the algorithm succeeds to estimate 
the number of people with approximately 79% accuracy, with 
errors up to two people. 

In [8], we have proposed an IEEE 802.11ac explicit 
feedback-based channel state information (CSI) learning system. 
The proposed CSI learning system automatically collects IEEE 
802.11ac CSI feedback frames among a Wi-Fi access point and 
devices with Wi-Fi capture interface. A CSI feedback frame 
includes compressed angles information, and our system 
extracts 624 features from the frame. In the learning phase, the 
user inputs label information to the learning system, and the 
learning system automatically relates the captured CSI with the 
input label information. In the estimation phase, our learning 
system infers a label using captured CSI frames at that time. We 
have evaluated our learning system for device-free user location 
estimation with six patterns: different combinations of the 
behavior of a user and the antenna orientation of an access point. 
The evaluation results show that our CSI learning system 
achieves approximately 96% accuracy for seven positions when 
the behavior of the user is walking and the orientations of the 
antennas have divergence. 

C. Deep Learning on IoT device networks 
Distributed machine learning is nowadays becoming more 

popular. Most of the existing frameworks that support 
distributed machine learning adopt a data parallelization concept 
where multiple learning instances are launched and the trained 
parameters in DNN are aggregated and shared for more 
lightweight, faster training [50]. For example, in Distributed 
Machine Learning Toolkit (DMTK) framework operated by 
Microsoft supports inter-process communication libraries (MPI 
and ZMQ) for exchanging data block among processes. 
Distributed TensorFlow [51] by Google adopts a parameter-
server and workers model. ChainerMN, which is an add-on 
package, also supports MPI such as OpenMP for the same 
purpose.  However, the data parallelization model is basically a 
technique for a set of parallel, networked servers with rich 
computational and networking resources, which is not 
applicable to our case.  

The fundamental problem which we aim in this paper is how 
to manage and utilize data in in-situ environment [52]. We will 
have a number of small or tiny edge (or end-user) devices in 
future, each of which has very limited capability of computation 
and communication. But delivering the data stream from those 
edge devices to a remote server is not reasonable. We need to 
arrange a communication channel, including expensive cellular 
communication, for each sensing location. For example, for 
remote monitoring and tracking of daily life of elderly, who live 
alone in mountainous area (this is a big issue in Japanese 

society), 3G is still an important way of communication due to 
the limitation of LTE/4G service in such areas. Consuming the 
most of the limited channel capacity by delivering raw sensor 
data, most of which is useless after training or classification, is 
not a feasible solution. 

For more ambient, energy-aware processing, we have 
proposed a framework called MicroDeep [7]. The key concept 
of MicroDeep lies in embedding deep learning (both 
training/testing functions)  onto wireless sensor networks, which 
are composed of tiny IoT processors with sensors. Since those 
sensors will be embedded in our environment in future, 
leveraging their processing power and communication devices 
will benefit energy-efficient sensing and feedback. Particularly, 
additional investment for deep learning is not necessary as tiny 
sensor nodes cooperate with each other to conduct the training 
task. 

The idea is to appropriately distribute the neurons of CNN 
(Convolutional Neural Network) to wireless nodes, each of 
which has limited processing capability but can have some 
power when they are united. We use a distributed version of 
CNNs which are designed for this purpose. Normally, the 
wireless sensors nodes are installed in 2D (or 3D) space and they 
are close to each other to form a mesh-like network.  We regard 
each block of sensing data from those sensor nodes at the same 
time as an image data, and apply CNN to each data block.  For 
this purpose, we assign each sensor node onto XY-coordinates 
as shown in Fig. 8. The forward propagation of data that includes 
convolution, pooling and fully-connect layers (units) is carried 
out based on the assigned coordinates, where a unit executed on 
a sensor node takes the sensing data owned by the 
neighboring/surrounding sensor nodes as inputs. 

 

Fig. 8. Assignment of CNN to XY-Coordinates 

The backpropagation process is carried out in a distributed 
fashion, which is originally designed as a centralized process. 
Weights of units are updated independently by each sensor node 
to avoid communication overhead, sacrificing some accuracy.  

We conducted two experiments using real data. One is 
performed using the temperature data measured in an over-
1,400m2 lounge space using 50 temperature sensors. The lounge 
space is divided into 25 x 17 cells, and the temperature measured 
within a cell is associated with its coordinates. Each sensor 
measured the temperature every 30 minutes, and we finally 
collected 2,961 temperature samples from August 26th to 



October 27th in 2016. We trained CNN to detect discomfort in 
the space, and as a result of our MicroDeep, the accuracy was 
about 95\% while 97% by the standard CNN with the optimized 
hyperparameters. The maximal communication cost compared 
with this standard version is just 13%, which means MicroDeep 
can reduce the peak traffic concentrated onto a single node. 

 
Fig. 9. Prototyped IR-sensor Array for Motion Detection 

Another experiment is for narrow space, where a sensor 
array is built using thin-, energy-efficient film-type infra-red 
sensors with microprocessors. Fig. 9 shows a prototyped IR-
sensor array. This is used for activity recognition, particularly, 
fall detection of elders. Every sensor transfers its measured data 
by 2.4GHz wireless communication. We have collected 55 gait 
samples from five (young) subjects who imitated falling down 
behavior of elders. We regard each sample as a stream of 66 
images where the frame rate is five frames per second. Although 
the walking speed is not uniform among different persons, we 
empirically determined two seconds (= 10 frames) window to 
cover a single passage. We gave 6,610 3D arrays as inputs to 
CNN. We used CNN consisting of one convolutional layer, one 
pooling layer and two fully-connected layers. 

We have compared the following two cases: (a) best 
accuracy by using standard CNN with optimal parameter setting 
and (b) heuristic assignment to maximize the correspondence of 
CNN links and WSN links equalizing the number of units 
assigned to each sensor node. Fig. 10 shows the communication 
costs of the sensor nodes for both cases. We have carried out ten 
trials of learning and validation with a randomly split pair of 
training and validation dataset. For each trial, the weight 
parameters have been randomly initialized. We have evaluated 
the best accuracy by using standard CNN with optimal 
parameter setting where the accuracy is 91.875% and the 
maximal communication cost becomes 360 as shown in Fig. 
10(a). On the other hand, for the case of heuristic assignment to 
maximize the correspondence of CNN links and WSN links, we 
have found 89.7275% accuracy and the maximal 
communication cost becomes 210 as shown in Fig. 10(b). Hence, 
the performance of our prototype is 2% lower than that of the 
optimized CNN while we can achieve 40% mitigation of the 
maximal communication cost. For designing energy harvesting 
IoT sensor systems, it is very important to equalize the number 
of units assigned to each sensor node and to minimize the 
maximal communication costs of the sensor nodes so that all the 
sensor nodes can be alive and work well using a small amount 
of energy. We believe our approach is one of the promising 
approaches for constructing tiny IoT device networks and 
providing effective deep learning mechanisms on such tiny IoT 
device networks. 

Although the current version of Micro Deep uses general 2.4 
GHz Wi-Fi, we can reduce the electric power of wireless 
communication by using ambient backscatter communication. 
This is our on-going future work. 

 
(a) with Optimal Parameter  Set     (b)  with Feasible Parameter Set 

Fig. 10. Communication Cost of Sensor Node (Motion) 

V. RESEARCH CHALLENGE 
As mentioned above, understanding humans and its 

environment is a key enabler for providing smart and intelligent 
applications and services in future smart society. In order to 
deploy such services in our ambient environment, it is essential 
to fully utilize battery-less and maintenance-free IoT devices 
and their corresponding technologies. A significant challenge is 
how to make use of inferior, less-powerful zero-energy IoT 
devices to achieve processing of interest, i.e., accurate 
recognition of humans and objects, while a single device does 
not work. We need to make such distributed tiny IoT devices 
orchestrate for both sensing and communications.  

From the communication point of view, it is important to be 
able to successfully use general wireless communication such as 
WiFi and ZigBee and ambient backscatter communication in 
parallel as shown in Fig. 1. In general, there are cases where 
many zero-energy IoT devices need to be placed in a target area. 
In such a case, it is important to avoid the collision of 
communication IoT devices. If we use multiple channels in 
parallel, we need to consider practical channel assignments 
among those IoT devices according to data size, transmission 
frequency, and channel quality as well as application 
requirements. In a given IoT device network, it is cumbersome 
for the system designer to individually specify the setting of 
transmission/reception timing, channel assignment and recovery 
procedure at the time of transmission/reception errors. It is 
important to devise mechanisms to automatically generate 
necessary information collection algorithms from (a) 3D map 
and obstacle information of a given IoT device network, (b) the 
necessary information collection cycle and (c) the recovery 
methods when errors occur.  

From the sensing point of view, as shown in Section III.B, 
distributed processing on zero-energy IoT device networks will 
achieve highly promising sensing in ambient environments. In 
Section IV.C, we show that the development of machine 
learning mechanisms on tiny IoT device networks with low 
communication costs is an important research issue. Also, the 
nature of radio wave propagation differs considerably depending 
on the location and the presence of obstacles. The efficiency of 
machine learning strongly depends on the initial values and/or 
teaching data. The radio wave propagation evaluation tools and 
network simulators can be used together to generate appropriate 
initial values depending on given location environments. A part 
of tiny IoT devices may be broken. The development of resilient 
distributed machine learning mechanisms in the environments 
containing such broken IoT devices is also important. 



VI. CONCLUSION 
In this paper, we focus on ambient backscatter 

communication technology capable of communication using 
radio waves in the environments and survey the latest 
technology of backscatter communication, wireless sensing and 
context recognition of humans and objects. In general, since 
each zero-energy IoT device does not have enough recognition 
capability by itself, we need to construct an edge computing-
based network with a large number of zero-energy IoT devices 
in order to acquire diverse sensing information. Here, we present 
issues to be considered in distributed processing on zero-energy 
IoT device networks and their solutions. we also explain our 
current on-going work concerning backscatter communication, 
channel state information and context recognition. We show that 
AI technology such as Convolutional Neural Networks (CNNs) 
on wireless sensor networks (WSNs) can integrate ambient 
backscatter based direct sensing with ultra-low power IoT 
devices and wireless sensing based indirect sensing with 
existing wireless networks in order to create energy harvested 
context recognition technology of humans and objects. We hope 
zero-energy IoT device networks using backscatter 
communication become more popular and they will be used for 
constructing our smart societies in the near future. 
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