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Abstract—In this paper, a traffic reduction scheme for video-
based call and chat applications that uses deep neural network
(DNN) based super resolution is proposed. Specifically, a sender
transmits low-quality, low-resolution video frames containing face
information in order to reduce the amount of video traffic. The
receiver uses DNN-based super resolution to reconstruct high-
quality, high-resolution video frames from the low-quality video
frames. The proposed scheme makes two contributions. First,
face features are adopted for parameter optimization of DNN-
based super resolution for high-quality image reconstruction.
Second, the scheme includes a newly designed loss function that
considers face features that allows high-quality face-containing
video frames to be reconstructed at the receiver. According to
our evaluation results using real video frames of video calls,
the proposed scheme reduces the amount of video traffic by
more than 90% as compared with the conventional schemes that
implement the standard video encoder. In this case, the proposed
scheme achieves a reconstructed image quality up to 0.85 in terms
of structural similarity (SSIM).

Index Terms—Deep Neural Network, Video Call, Video Chat,
Super-Resolution

I. INTRODUCTION

As the number of mobile users increases, the number of
users of social networking service (SNSs), e.g., Facebook
and Instagram, communicating with on-line/off-line friends is
also increasing. In such services, the user frequently captures
his/her face using a mobile device’s camera and shares the
captured video with users so that they can enjoy video calls
and chat with friends [1]. Face-containing video contents are
also applied in many applications for teleconference and cus-
tomer support to allow smooth communications with remote
users [2].

A major issue pertaining to applications that use face-
containing video contents is the large amount of video traf-
fic that they generate as compared with audio- and text-
based applications. A large amount of video traffic causes
low video quality in band-limited links/networks. To reduce
video traffic, video compression techniques, such as Advanced
Video Coding (H.264/AVC) and High Efficiency Video Cod-
ing (H.265/HEVC), have been proposed for general video
applications [3], [4]. These techniques use motion estimation,
quantization, and entropy coding to attain better compression
gains; however, the problems caused by the large amounts of
video traffic in video-based call and chat applications remain.
To achieve significant traffic reduction in such applications,
an application-specific method is required that considers the
video features in video call and chat applications: many video

frames captured in the applications may contain the sender’s
face.

For this purpose, a novel transmission scheme is pro-
posed for video call and chat applications, motivated by
deep neural network (DNN)-based super resolution, i.e., deep
convolutional generative adversarial networks (DCGANs) [5].
DCGANs reconstruct high-quality and high-resolution face-
containing video frames from low-quality and low-resolution
face-containing video frames by using a pre-trained generation
model. The key idea of our scheme is that a sender transmits
only low resolution and quality face-containing video frames
over networks and the receiver uses a DCGAN to reconstruct
high-resolution, high-quality face-containing video frames.
Since the quality of the reconstructed video frames depends on
the parameters of the generation model, the parameters must
be optimized using the sender’s face-containing video frames
and a loss function before video transmissions. The optimized
parameters are then shared with the receiver. The evaluation
results show that our scheme achieves an approximately 90%
traffic reduction as compared with the existing scheme, which
uses the conventional video compression. In this case, the
proposed scheme provides a clean face image after the image
reconstruction with a structural similarity (SSIM) of 0.85.

The contributions of the proposed scheme are three fold: 1)
it uses the face features in addition to the face-containing video
frames for parameter optimization of the generation model to
achieve high-quality reconstruction, 2) it includes a new loss
function designed such that the face features are considered
in order to enhance the image reconstruction quality at the
receiver, and 3) it both realizes significant traffic reduction and
maintains visual quality for applications using face-containing
video contents, such as video call and chat.

II. RELATED RESEARCH

Our study is related to studies on super resolution-based
image reconstruction, DNN/generative adversarial network
(GAN) based image reconstruction, and DNN-based video
delivery.

A. Super Resolution-based Image Reconstruction

In super resolution techniques, low-resolution images are
restored to high-resolution images. There are two types of
super resolution techniques: single-image and multiple-image.
For example, A+ [6] and RAISR [7] have been proposed for
single-image super resolution, while [8], [9] proposed super



resolution for multiple images. In addition, the scheme in [10],
[11] realizes high-quality super resolution for multiple images
by using recurrent convolutional networks.

In our study, we used single-image-oriented super resolution
for face-containing video frame reconstruction in video call
and chat applications. For high-quality image reconstruction,
the proposed scheme considers DNN- and GAN-based super
resolution at the receiver. The super resolution uses generation
and discriminant models to reconstruct a high-quality image
from the corresponding noisy image to realize low-traffic video
delivery. In this case, the parameters of both models are trained
using the face features in addition to the face-containing video
frames to allow high-quality reconstruction.

B. Deep Neural Networks/Generative Adversarial Network-
based Image Reconstruction

In recent years, some studies were aimed at DNN/GAN-
based image reconstruction, such as super resolution using
convolutional neural networks (SRCNN) [12], DCGAN [5],
Laplacian pyramid of GAN (LPGAN), and super resolution
using a GAN (SRGAN) [13] to further improve the recon-
struction quality. Specifically, DCGAN combines a CNN with
a GAN to generate a high-quality image from a noisy image.
LPGAN and SRGAN extend DCGAN for super resolution.
For example, LPGAN stacks multiple layers of DCGAN to
gradually improve the reconstructed image quality. The study
most relevant to our proposed scheme is that on srez [14].
In this study, the authors used DCGAN to reconstruct high-
resolution face-containing images from low-resolution images.

The super resolution technique in the proposed scheme is
based on srez. We use super resolution to reconstruct face-
containing images to achieve traffic reduction for video call
and chat applications. To further improve the reconstruction
quality, we focused on the face features and designed a new
loss function for super resolution that considers them.

C. Deep Neural Network-based Video Delivery

In a few studies, DNNs were applied to video delivery over
the Internet [15], [16]. The main objective of these studies
was to obtain better streaming quality by using DNN-based
predictions.

In [15], a rate control method for real-time video streaming
using DNN-based future bit-rates and delay predictions was
proposed. In [16], the authors presented a video delivery
framework to improve video quality in order to enhance users’
quality of experience (QoE) when viewing video-on-demand
contents, such as films and TV shows.

The approach most closely related to our study was included
in [16], that is, the utilization of DNNs for video quality
improvement. This approach is focused on the overall system
structure and partially uses the conventional DNN for video-
on-demand streaming. However, in our approach a new DNN
is designed that includes a loss function that uses face features,
for real-time video call and chat applications.

III. PROPOSED SCHEME

In this paper, a transmission scheme for face-containing
video contents is proposed that realizes a significant traffic
reduction for video-based call and chat applications. Fig. 1
shows an overview of the proposed scheme. The scheme first
extracts the face features from the captured face-containing
video frames using the face detector in dlib. The captured
video frames are then converted to low resolution and en-
coded by the H.264/AVC encoder prior to transmission. After
the encoding, the sender transmits the low-resolution video
frames and the corresponding face features to the receiver.
The receiver first uses the H.264/AVC decoder to decode the
received video frames. Since the resolution of the decoded
video frames is lower than that of the original video frames,
they are then reconstructed to the original resolution by using
DCGAN and the face features.

A. Generation and Discriminant Model

DCGAN uses both generation and discriminant models for
image reconstruction. For high-quality image reconstruction,
the optimized parameters of the generation and discriminant
models are determined by using numerous face-containing
video frames in the training phase.

We consider an original video frame containing the sender’s
face Iorg with a resolution of W ×H×C pixels and the low-
resolution video frame Idown with a resolution of rW×rH×C
pixels. Here, W and H represent the width and height of the
original video frame, respectively, and C is the number of
color channels. In addition, r is a downscaling factor. The
generation model G(= GθG(Idown)) is one that reconstructs a
video frame Irec with a resolution of W ×H ×C pixels from
the low-resolution video frame Idown using the parameters of
the generation model θG. In this case, the parameters need
to be optimized to improve the reconstruction video quality
using the generation model. This optimization is expressed
by the following equation using N original video frames
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Fig. 1. Overview of the proposed scheme.
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Fig. 2. Generation model of the proposed scheme.
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Fig. 3. Discriminant model of the proposed scheme.
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(i)
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)
, I(i)org

)
, (1)

where l
(
GθG(I

(i)
down), I

(i)
org

)
represents the loss function of

the generation model with the inputs of the original and
reconstructed video frames for parameter optimization of the
generation model. The details of the loss function implemented
in our scheme are described in Section III-B.

The discriminant model D is a binary classifier and used
for the parameter optimization of the generation model G.
The discriminant model attempts to distinguish between the
reconstructed (false) data and the true data of the dataset.
To improve the reconstruction accuracy, the proposed scheme
solves the following minimax optimization by using both
generation and discriminant models based on the method
in [17]:

min
θG

max
θD

EIorg∼Pdata(I)

[
log

(
DθD (Iorg)

)]
+EIdown∼Pmosaic(I)

[
log

(
1−DθD

(
GθG(Idown)

))]
,

(2)

where DθD (Iorg) is the probability that the original video
frame Iorg belongs to the true dataset, 1−DθD (GθG(Idown))
is the probability that the reconstructed video frame generated
by the generation model G belongs to the false dataset, and
E[·] is the expected value. Since the discriminant model D
needs to correctly distinguish between the original and the
reconstructed video frame, the parameters of the discriminant
model θD should be optimized to maximize both probabilities.
However, in view of the generation model, the reconstructed
image should be classified into the correct dataset. This means

that the generation model should find the optimized parameters
that minimize the probability of 1−DθD (GθG(Idown)).

Figs. 2 and 3 show our generation model and discriminant
model, respectively, based on the srez scheme [14]. In the
generation model, the proposed scheme uses the convolution
layer at the first layer. The convolution extracts the indepen-
dent features of each image using certain convolution kernels.
Note that the image features are shown in the weights between
the layers. In the second layer, we use a rectified linear unit
(ReLU) layer. Before the third layer, the proposed scheme adds
the second layer output and the low-resolution frame generated
by bilinear interpolation. This is the third layer input. At
both the third and fourth layers, the proposed scheme uses
convolution layers. In the fifth to seventh layers, the proposed
scheme uses batch normalization, ReLU, and convolutional
layers, respectively. The batch normalization standardizes the
input values to balance the values in order to reduce the effect
of outliers. The proposed scheme repeats these 3 layers one
time to construct up to the 10-th layer, and then adds the 10-th
layer output and 4-th layer output. At the 11-th to 13-th layers,
we use batch normalization, ReLU, and the transconvolution
layer, respectively, and then repeat the 4-th to 13-th layers
one time to obtain the 14-th to 23-rd layers. Furthermore, the
proposed scheme uses the convolution and the ReLU layers at
the 24-th and 25-th layers and repeats the same layers for the
26-th and 27-th layers, and uses the convolution layer in the
28-th layer. Finally, the sigmoid layer is allocated to the final
layer.

In the discriminant model, the first layer is convolution,
the second layer is batch normalization, and the third layer is
ReLU. The proposed scheme repeats these 3 layers up to the
18-th layer. In the 19-th and 20-th layers, the model uses the
convolution and finally average operations.
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Fig. 4. Learning phase in sequential sharing.
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Fig. 5. Reconstruction phase in sequential sharing.

B. Loss Function

In our scheme, the loss function consists of three factors:
generation loss, pixel-domain loss, and face feature loss.
Specifically, the loss function is expressed as

l
(
GθG

(
I
(i)
down

)
, I(i)org

)
= α1 · l(i)adversarial+α2 · l(i)pixel+α3 · l(i)face

(3)
Here, α1, α2, α3 are weights of each factor, the value of which
is from 0 to 1. l(i)adversarial represents the generation loss:

l
(i)
adversarial = − log

(
DθD

(
GθG

(
I
(i)
down

)))
(4)

The generation loss increases as the probability that the
reconstructed video frame generated by the generation model
G belongs to the false dataset increases. l(i)pixel represents the
pixel-domain loss:

l
(i)
pixel

=
1

r2WH

rW∑
x=1

rH∑
y=1

∣∣∣I(i)down(x, y)−R
(
GθG

(
I
(i)
down(x, y)

))∣∣∣ ,
(5)

where R(·) represents a resize function and I
(i)
down(x, y) rep-

resents the (x, y)-th pixel value of the i-th low-resolution
video frame. This loss factor represents the average difference
between the pixel values of the low-resolution original and the
reconstructed video frames.

l
(i)
face represents the difference between the face features in

the original and reconstructed video frames:

l
(i)
face =

1

68

68∑
k=1

∣∣∣∣∣∣Ψ(
I(i)org

)
−Ψ

(
GθG

(
I
(i)
down

))∣∣∣∣∣∣
2

(6)

where Ψ(·) is an extraction function of face features from
face-containing video frames. To extract the face features from
the face-containing video frames, the proposed scheme uses
histogram of oriented gradient (HOG) features [18] and dlib
detection. Here, we used the existing dataset http://dlib.net/
files/shape predictor 68 face landmarks.dat.bz2 published by
iBUG 300-W to obtain the HOG features in each video frame.
The dlib detection algorithm extracts 68 face features, includ-
ing jaw, eyes, eyebrows, nose, and mouth, from each face-
containing video frame based on the HOG features. Note that
the proposed scheme calculates l

(i)
face only when the sender’s

face is detected by dlib in the i-th face-containing video frame.
If dlib does not detect the sender’s face in the video frames,
the proposed scheme uses the following loss function instead
of Eq. (3):

l
(
GθG

(
I
(i)
down

)
, I(i)org

)
= (1− α) · l(i)adversarial + α · l(i)pixel. (7)

Here, α is a parameter that takes a real value between 0 and
1.

C. Parameter Sharing of Generation Model

The proposed scheme finally shares the parameters of the
generation model between the transmitter and the receiver



before video transmissions. It considers two methods for
parameter sharing: sequential sharing and pre-sharing. The
sequential sharing method periodically updates the parameters
of the generation model based on the new sender’s face-
containing video frames while the parameter optimization
overhead becomes larger. The pre-sharing method always
sends the pre-trained parameters to the receiver to decrease
the overhead. The reconstruction quality is degraded if the
captured video frames contain objects and scenes that differ
from those of the training phase.

1) Sequential Sharing: The sequential sharing method con-
sists of two phases: learning and reconstruction. Fig. 4 shows
an overview of the learning phase. In this phase, the receiver
simultaneously displays the high-resolution video frames and
trains the parameters of the generation model using these
frames. Specifically, a sender first encodes the high-resolution
video frames using the standard video encoder H.264/AVC
and transmits the encoded video frames to the receiver. The
receiver first obtains the high-resolution frames by decoding
the received video frames and displays the decoded video
frames. At the same time, the receiver resizes the decoded
video frames into low-resolution frames and extracts the face
features from the high-resolution video frames. The receiver
then trains the parameters of the generation model using
both the high- and low-resolution video frames and the face
features to reconstruct the high-resolution video frames from
the low-resolution video frames and the corresponding face
features. When the training in the learning phase has been
completed, the receiver sends a signal to the transmitter that
the reconstruction phase should be initiated by the transmitter
and the receiver.

Fig. 5 shows an overview of the reconstruction phase.
The transmitter resizes the high-resolution video frames into
low-resolution frames and extracts the face features from the
high-resolution video frames. The low-resolution video frames
are encoded by H.264/AVC, and then, the encoded video
frames and the corresponding face features are transmitted to
the receiver. The receiver reconstructs high-resolution video
frames by using the generation model obtained in the learning
phase. In this case, the receiver uses the low-resolution face-
containing video frames and the corresponding face features
as inputs of the generation model. Finally, the reconstructed
video frames are displayed on the receiving device.

2) Pre-Sharing Method: The pre-sharing method sends the
pre-trained parameters of the generation model before initial-
izing video-based call and chat applications. After sharing the
pre-trained parameters with the receiver, the transmitter sends
low-resolution face-containing video frames and the extracted
face features. Finally, the receiver reconstructs high-resolution
video frames using the generation model and the face features;
the operations are the same as in the reconstruction phase in
the sequential sharing method.

IV. PERFORMANCE EVALUATION

A. Evaluation Settings

In the performance evaluation of the proposed scheme for
video-based call and chat applications, we used real video
sequences of video call applications. The video frames were
captured by a PENTAX KS-2. The frame rate was 30 frames
per second (fps) and the duration of the video sequence was
10 m. Each video frame was compressed by using Joint
Photographic Experts Group (JPEG). The compressed video
frames were resized to two resolutions, i.e., 80×80 pixels and
160 × 160 pixels, and regarded as the input high-resolution
video frames. We prepared 18,000 input video frames for
training and testing. The batch size of both training and testing
was 16.

The parameters of α, α1, α2, and α3 were 0.90, 0.90,
0.09, and 0.40, respectively. The initial value of the learning
coefficient was 0.0002. In addition, the initial values of the
weight and bias were obtained from the normal distribution
and 0, respectively. In our scheme, the parameter optimization
algorithm and the initial values were based on those of
Adam [19].

B. Effect of Batch Counts

We first discuss the visual quality of the reconstructed video
frames as a function of batch counts. Figs. 6(a)–(c) show the
visual quality of the reconstructed video frames for different
numbers of batch counts. In Fig. 6(a), the reconstruction
algorithm is based on srez [14]. Figs. 6(b) and (c) show the
visual quality of the results of the proposed scheme using both
loss functions, Eqs. (3) and (7). Figs. 6(c) and (b) respectively
show the results when the proposed scheme does and does
not use the face features for image reconstruction. From left to
right, each image is the mosaic image, the reconstructed image
using bicubic interpolation, the reconstructed image after 100,
200, 300, 400, 500, 800, 1,000, 2,000, 3,000, 4,000, 5,000,
8,000, and 10,000 batch counts, and the original image. To
create the mosaic image, we resize the input image to 20×20
pixels and adopt nearest neighbor interpolation to reconstruct
the image. Here, two images are selected from the testing
images to compare the visual quality.

The evaluation results show that the proposed scheme
reconstructs a genuine face in a smaller number of batch
counts as compared with the existing srez scheme. This means
the proposed loss function reconstructs high-resolution images
with a low overhead requirement. In addition, we can see that
the reconstructed images in the proposed scheme that includes
the face features show a clear face at a smaller batch count
as compared with those in the proposed scheme that does not
include the face features. This means that the face features
lead to a better reconstruction quality even in a small number
of batch counts.

C. Data Size Reduction

This section evaluates the data size of the proposed scheme
to demonstrate the effect on traffic reduction. Fig. 7 shows the
JPEG-coded (intra-coded), low-resolution, and reconstructed
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Fig. 6. Visual quality of reconstructed and original video frames as a function of batch counts.
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Fig. 7. Data size of intra-coded and low-resolution images.

images and their data size at a batch count of 1,250. Here, the
resolution of the upper and lower images is 80×80 pixels and
160× 160 pixels, respectively.

It is demonstrated that the data size of the intra-coded
and low-resolution images is 13,250 Bytes and 1,042 Bytes,
respectively, at a resolution of 80 × 80 pixels, while at a
resolution of 160 × 160 pixels the data size is 46,340 Bytes
and 3,230 Bytes, respectively. Thus, it is demonstrated that the
proposed scheme reduces the amount of video traffic by more
than 90% as compared with the intra coding in H.264/AVC,
irrespective of image resolutions.

D. Image Quality

In this section, we evaluate the quality of the reconstructed
image in each reference scheme in terms of the weighted peak

signal-to-noise ratio (WPSNR) and SSIM [20]. The WPSNR is
obtained by performing a weighted average of peak signal-to-
noise ratios (PSNR) in the YCbCr color components, since the
Y component contains considerable information as compared
with the other color components. Here, the weight in each
color component is Y : Cb : Cr = 8 : 1 : 1 [21]. SSIM
predicts the perceived video streaming quality. Larger values
of SSIM close to 1 indicate a higher perceptual similarity
between the original and reconstructed images. In contrast to
WPSNR, SSIM considers the correlation between each pixel
and its surroundings based on the luminance, contrast, and
structure. It has been confirmed that SSIM reflects human
visual characteristics as compared with PSNR [22].

Fig. 8 shows the quality of the mosaic image, a recon-
structed image using bicubic interpolation, srez, and the pro-
posed scheme in terms of WPSNR. The evaluation results
show that the performance of srez and the proposed scheme
are almost the same, even at a large number of batch counts.
Since WPSNR considers pixel-wise distortion and suffers from
low quality even in a 1-bit pixel shift, its use as an image
reconstruction metric is not suitable.

Fig. 9 shows the quality of the mosaic image, the re-
constructed image using bicubic interpolation, srez, and the
proposed scheme in terms of SSIM. As seen in this figure,
the proposed scheme with face features achieves the highest
video quality. This means the proposed scheme should use
face features to improve the reconstructed image quality. In
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addition, the reconstruction quality of the proposed scheme
without face features is almost the same as that of srez. It
is noted that the proposed scheme obtains a clear face with
a small number of batch counts as compared with srez, as
shown in Fig. 6.

V. CONCLUSION

In this paper, a traffic reduction scheme for video call and
chat applications that uses super resolution based on DNNs
was proposed. Specifically, the proposed scheme uses face
features for loss functions in the parameter optimization and
high-quality image reconstruction. According to the evaluation
results, the proposed scheme significantly reduces the amount
of video traffic as compared with the conventional video
encoding and simultaneously maintains better reconstruction
quality.
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